Tag: linear regression

Correlation and Linear Regression


From datascience+: “Before going into complex model building, looking at data relation is a sensible step to understand how your different variables interact together. Correlation looks at trends shared between two variables, and regression looks at relation between a predictor (independent variable) and a response (dependent) variable.”

Python for Data Science and Machine Learning Bootcamp


From Udemy: “Learn how to use NumPy, Pandas, Seaborn, Matplotlib, Plotly, Scikit-Learn, Machine Learning, Tensorflow, and more! What Will I Learn? Use Python for Data Science and Machine Learning Use Spark for Big Data Analysis Implement Machine Learning Algorithms Learn to use NumPy for Numerical Data Learn to use Pandas for Data Analysis Learn to use Matplotlib for Python Plotting Learn to use Seaborn for statistical plots Use Plotly for interactive … Continue Reading

SAS Learning path and resources – Business Analyst in SAS


This is a curriculum compiled by Analytics Vidhya as a guide to learning SAS for business analytics. The curriculum is composed of the following steps: Step 0: Why learn SAS Step 1: Downloading and Installing SAS Step 2: Base SAS on sas.com Step 3: SQL Step 4: Descriptive Statistics with the Udacity Intro to Descriptive Statistics course Step 5: Inferential Statistics with the Udacity Intro to Inferential Statistics course Step … Continue Reading

Learn Data Science


Learn Data Science is “a collection of Data Science Learning materials in the form of iPython Notebooks” and the “associated data sets.” The following topics are covered, with at least three notebooks including an Overview – an exposition of the technique for the math-wary”, Data Exploration – “the nuts and bolts of real world data wrangling”, and Analysis – “using the technique to get results”. Topics: Linear Regression Logistic Regression … Continue Reading

Data Science from Scratch: First Principles with Python


From Amazon: “Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get … Continue Reading

Linear Regression and Modeling


This is course 3 of 5 in the Statistics with R Specialization. From Coursera: “This course introduces simple and multiple linear regression models. These models allow you to assess the relationship between variables in a data set and a continuous response variable. Is there a relationship between the physical attractiveness of a professor and their student evaluation scores? Can we predict the test score for a child based on certain characteristics … Continue Reading

NIPS (Neural Information Processing Systems) Conference


From NIPS Conference site: “The Thirty-first Annual Conference on Neural Information Processing Systems (NIPS) is a multi-track machine learning and computational neuroscience conference that includes invited talks, demonstrations, symposia and oral and poster presentations of refereed papers. Following the conference, there are workshops which provide a less formal setting” Next event:  December 4 – 9, 2017 – Long Beach, CA – SOLD OUT! Videos from NIPS Conference 2016: NIPS 2016 Sessions … Continue Reading

Machine Learning Cheat Sheet

/ / /

This cheat sheet contains many classical equations and diagrams on machine learning, which will help you quickly recall knowledge and ideas in machine learning.

The Analytics Edge

/ /

Through inspiring examples and stories, discover the power of data and use analytics to provide an edge to your career and your life.

Practical Data Science with R


Practical Data Science with R shows you how to apply the R programming language and useful statistical techniques to everyday business situations using examples from marketing, business intelligence, and decision support.